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- FINI'fE, COUNTABLE, AND UNCOUNTABLE SETS
/-

We begin this section with a definition of the function concept.
2.1  Definition Consider two sets A and B, whose elements may be any objects
whatsoever, and suppose that with each element x of A there is associated, in
some manner, an element of B, which we denote by f(x). Then fis said to be a
function from A to B (or a mapping of A into B). The set A is called the domain
of f (we also say fis defined on A), and the elements f(x) are called the values
of f. The set of all values of fis called the range of f.
2.2 Definition Let A and B be two sets and let f be a mapping of 4 into B.
If E < A, f(E) is defined to be the set of all elements f(x), for x € E. We call

%\ f(E) the image of E under f. In this notation, f(4) is the range of /. It is clear
that f(4) = B. If f(4) = B, we say that f maps A onto B. (Note that, according
to this usage, onto is more specific than info.)

= . If E < B, f~'(E) denotes the set of all x € A such that f(x) € E. We call
S~ (E) the inverse image of E under f. If ye B, f™'(y) is the set of all xe 4

—
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such that f(x) =y. If, for.each y€ B; f ~1(y) consists of at'most one element
of A, then f is said to be a 1-1 (ohe-ro-one) mapping of A-into B. This may
also be expressed as follows: f is a 1-1 mapping of 4 into B provided that
f(x)) # f(x;) whenever x; # xy, X; € 4, x; €4.

(The notation x, # x, means that x; and x; are dlstmct elements; other-
wise we write x; = X;.)

'

2.3 Definition If there exists a 1-1 mapping of A onfo B, we say that A and B
can be put in 1-1'¢correspondence, or that A and B have the same cardmalnumber,
or, briefly; that 4 ard B'are equivalent, and we wme A B. Thls relanon
clearly has thc following propcmes

It is reflexive: A ~ A. &
It is symmetric: If A ~ B, then B ~ A.
It is tmnsmve If A~Band B~ C, then A~ C

il

Any rclauon with these three prope‘mcs is called an equwa[ence relation.

B

2.4 n|ition _For-any faositive intcgcr n, lct Jn be‘ the set whosc elements are
%integers 1, 2;..., n; let J be the set consisting of all positive integers. - For any

set A, we‘say: i

finite).
(b) A is infinite if A is not ﬁmtc .
(c) A is countableif A~J.
(d) A is uncountable if A is neither finite-nor countable.
(e) A is at most countable if A is finite or countable.

Countable sets are sometimes called enumerable, or denumerable.
B contain the same number of elements. For infinite sets, however, the idea of

“having the same number of elements™ becomes quite vague, whereas the notion
of 1-1 correspondence retains its clarity.

2.5 Example Let 4 be the set of all integers. Then A is countable. For,
consider the following arrangement of the sets 4 and J:

4:0,1,-1,2,-2,3,-3,.
1,2,3,4,5,6,7, ..

(@ 4 1sﬁmte ifA~ 1 for some n (the empty set is also considered to be -

For two finite sets A and B, we evidently have A ~ B if and only if Aand *
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We can, in this example, even give an explicit formula for a function f
from J to A which sets up.a:1-1, correspondence:

Wi P

) JE - g \(n even),
Py ] Then v et e
(n odd).

2.6 Remark A finite set cannoi be, equiyalent to one of its: proper "subsets
That this is, however, possible for. infinite sets, is shown by Example 2.5, in
which J is a proper subset of A.

In fact, we could replace Definition 2. 4(17) by the statement: A is mﬁmte lf
A is equivalent to one of its proper subsets.
2.7 Definition By a sequence, we. mean a function f defined on the set J of all
positive integers. If f(n) = x,, for neJ, it is customary to denote the sequence
/by the symbol {x,}, or. sometimes by x;,:x;, X3,.... The values of f; that is,
the elements x,, are called the terms of the sequencs. If Aisasetandifx,ed
for all n e J, then {x,} is said to be a sequence in A, or a sequence of elements of A
‘Note that the terms xj, X, X35... of a sequence need not be distinct. - -
Since every countable-set is the range of a 1-1 function defined on J, we
may regard every countable set as the range of a sequence of distinct terms.
Speaking more loosely, we may say that the clements of any countable set can
be “‘arranged in-a sequence.”” "

Sometimes it is convenient to replace J in this definition by the set of all
nonnegative integers, i.e., to start with 0 rather than with 1

2.8 .Theorem Every infinite subset of a countable set A is countable

Froof Suppose E < 4, and E is infinite. Arrange the elements x of Ain
4 sequence {x,} of distinct elements. Construct a sequence {n,} as follows:

Let n, be the smallest positive integer such that x,, € E. Having
chosen ny, ..., My (k =2,3,4,...), let n, be the smallest mteger gredter
than n,_, such that x, € E.

Putting ftk) =x,, (k=1,2,3,.
between E and J. '

The theorem shows that, roughly speaking, countable sets represent

the “smallest” infinity: No uncountable set can be a subset of a countable
set.

..), we obtain a 1-1 correspondence

2.9 Definition Let A and Q be sets, and suppose that with each element a of
A there is associated a subset of Q which we denote by E,
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*The set whose elements are the sets E, will be denoted by.{E,}.fInlsteZc:'
of speaking of scts of sets, we shall ‘sométimes speak of a collection of sets,
a family of sets.

The union of the sets E, is dcﬁned to be the'set S such that x € Sif and only
if x € E, for at least one x € 4. We use.the notation

o e

lf A consnsts of thc mtegers 1 2 , n, one usually writes

V) S= QlE,.
or i *
(3) S=E‘l-)EzU";UE’l'

If A is the set of all positive integers, the usual notation is _
@ - s= U En-

The symbol o in.(4) merely indicates that the union of a countable col-
lection of sets is taken, and should not be confused with the symbols + o0, — 0,
introduced in Definition 1.23. i

The intersection of the sets E, is defined to be the set P such that.x € P if
and only if x € E, for every x € A. We use the notation

® P=(\E.,
aed
or :
©) P=(E\E,,l=E|nEzn-”r\E,,,
m=1
or
m P =) En,

as for unions. If A N B is not empty, we say that 4 and B intersect; otherwise
they are disjoint.

2.10 Examples

(a) Suppose E; consists of 1,2,3 and E, consists of 2,3,4. Then
E, U E, consists of 1,2, 3, 4, whereas E, n E, consists of 2,3
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(b) Let A be the set of real numbers x such that 0 < x < 1. For every
x € A, let E, be the set of real numbers y such that 0 <y < x. Then

(1) E,cE,ifandonlyif0<xszsl;.
(ii) U E.=E;
. x€eA
(iii) ) Ex is empty;
xed

(i) and (ii) are clear. To prove (iii), we note that for every y >0, y ¢ E,
if x <y. Hence y ¢ Neea Ex-

2.11 Remarks Many properties of unions and intersections are quite similar
to those of sums and products; in fact, the words sum and product were some-
times used in this connection, and the symbols £ and [T were written in place

of |J and . .

The commutative and associative laws are trivial:

®) AuB=BuUA; AnB=BnA.

® (AuB)uC=Au(BuC); "(AnE)nC:An(Bn‘C).

Thus the omission of parentheses in (3) and (6) is justified.
The distribiitive law also'holds: ©

@aoy - - AR BUD=MANBUANC)
To prove this, let the lefé and'rig}xt'-r;]embcrs of (10) vbe d:nétcé vby E and F,
respectively. RS ‘ N

Suppose x € E. Then x€ A and ‘xe BuC, thatis, xe Bor x€ C (pos-
sibly both). Hence x € AABorxeAnC,sothatxe F. Thus Ec F. !

Next, suppose X € F. Then x€ A n B orx eAnC. That is, xe 4, and
xeBuUC. Hence xe A ‘~A"(B U'C), s that F < E.

It follows that E = F.

We list a few more relations which are easily verified:

an ' A AU B,

a e AR AT

If 0 denotes the empty ‘set, then .

13 A4u0=4, An0=0

If Ac B, then o B F N ,
ay M e s e b

——

212 Theorem Let{E},n =1,2,3,

as) 5= -

Then S is countable.
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..., be a sequence of countable sets,and put

n=1

Proof Let every set E, be arranged in|a sequence (xuh k=12, 3 ies

and consider the infinite array

X 3 | s
x/ﬁ;?:z{ X4

(16) %i:jn

X0 Xa2

in- which the elements of E, form the]

X33 X34
Xa3 Xaa

nth row. The array contains all

elements of S. Asw indicated by the arrows, these elements can be

arranged in a sequence

(17) X(1's X210 X125 Xyps X225 X135 Xaps X320 X230 X145 -0

If any two of:the sets E, have elements|in common, these will appear more
than.onge in (17). Hence there is a subsct T of the set of all positive
integers such that S~T, which sHows that S is at, most countable
(Theorem 2.8). Since E, =S, and £, is infinité, 5 is infinite, and thus

* countable.

‘Cotollary * Suppose A is at most countable| and; for every we-A, B, is -at most

countable. Put

j.‘lien T is :dl most ct_;urg_lalﬂé,

For T is cquivalent'lo a subset of'(lf).

r-|

0}

aed

2.13 Theorem "Let A be a countable set| and let B, be the set of all n-tuples

(ay, ---» @), where a, € Ak=1,..
distint. Then B, is cquntable.

.. n), and the elements ay, \.., a, néed-riot.be

i “Prgef That B, is countable is évid ent; since By = A. Suppose B,y is
countable (n =2,3,4,:..). The clethents of ‘B; aré of the form

(18) (b, a) (ble B,-y,a€ A).

For every fixed b, the set.0

f pairs| (b, a).is equivalent to A, and hence

countable. Thus B, is the union of|a countable set of countable sets. By

" Thedrem 2:12, B, is countable. "

The theorem follows by induction.
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Corollary The set of all rational numbers is countable.

Proof We apply Theorem 2.13, with n =2, noting that every rational r
is of the form b/a, where a and b are integers. The set of pairs (a, b), and
therefore the set of fractions b/a, is countable.

In fact, even the set of all algebraic numbers is countable (see Exer-
cise 2).

That not all infinite sets are, however, countable, is shown by the next
theorem.

2.14 Theorem Let A be the set of all sequences whose elements are the digits 0
and 1. This set A is uncountable.

The elements of A are sequences like 1,0,0, 1,0, 1, L,1,....

Proof. Let E be a countable subset of 4, and let E consist of the se-
quences sy, 57,53, .... We construct a sequence 5 as follows. If the nth
digit in s, is 1, we let the nth digit of s be 0, and vice versa. Then the
sequence s differs from every member of E in at least one place; hence
s¢ E. But clearly s € 4, so that E is a proper subset of A.

. We have shown that every countable subset of 4 is a“proper subset
of A. It follows that A is uncountable (for-otherwise A would be a proper
subset of A4; which is absurd). . ‘ v

The idea of the above proof was first used by Cantor, and is called Cantor’s
diagonal process; for, if the sequences sy, 52, 53, - - are placed in an array like
(16); it-is the elements-on the diagonal :which are involved in.the construction of
the new sequence. i .

Readers who are familiar with the binary representation of the real
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the
set of all real numbers is uncountable. We §hall give a second proof, of this
fact in Theorem 2.43. ) L

S A g .

METRIC SPACES . : )

245 Definition A set X, whose elements we shall call points, is said to b¢ a
me‘tvr_ip_v;sp_ace,‘,i_[,-with any two points p and ¢ of X there is associated. a real

number d(p,q), called the distance from p to g, such that

(0) d(P,q)>0ifp;éq;d(p’p)r__.0;
® d(p, q) = d(q,p); > '
raGCH d(p,q) < d(p, 1) + d(r, q), for any re X.

i i

" Any functibn with these three p'rop.crlties is called a distance Sfunction, or
a metric. T T = D

i1
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2.16 Examples The most important examplgs of metric sgaces, fron: our
standpoint, are the euclidean spaces R*, especially R! (the real line) and R? (the_.
complex plane); the distance in R is defined by

(19) [y =Ix—-yl GyeR.
By Theorem 1.37, the conditions of Definition 2.15 are sati.sﬁed by (1?). )
It is important to observe that cvery subset Y of a metric space X is a metric
space in its own right, with the same distance function. For it 1s clear th.at if
conditions (a) to (c) of Definition 2.15 hold for p, ¢, r € X, they also hold if we
restrict p, g, r to lie in Y.
Thus every subset of a euclidean space is a metric space. Other examples
are the spaces ¥(K) and ?%(u), which are discussed in Chaps. 7 and 11, respec-
tively.

2.17 Definition By the segment (a, b) we mean the set of all real numbers x .
such thata <x <b. * - e i : ' o d

By the interval [a, b] we mean the set of all real: numbers x such that .
a<x<b. - : .

Occasionally we shall also encounter “half-open intervals” [a, b) and (a, b];
the first. consists, of all x such that a <x < b, the.second of all x such that
axx<bh D ) i m s g iy g

Ifa; <b;fori=1,..., k, the set of all points x'=(xy, ..., ) in R* whose
coordinates satisfy the inequalities a; < x; <.b; (L<i< k) is called a k-cell. -
Thus a 1-cell is an interval, a 2-cell is a rectangle, efc. o= il

If x € R*and r >0, the opén (or closed)-ball:B with cénter:at-x and fadiusr
is defined to be the set of all y € R* such that |y = x| < £ (or |y = x[<F).

We call a set E < R* convex if

Creddxet (1 = Ay €E -

whenever x € E, y € E, and0<icl, - .
For example, balls aré -convex. ~For:if:y|y = x|.'< r,{|z —=x|:<r, and
0 <A< 1, wehave . R

i

Dy 50— 2= x| = 120 =30 + (1 = DE =,

Ty
Ji=p; . “np

t k-c-ells arg,

':hc same proof applies to flosed baidl}s!: It is also easy to see tha
onvex. d \ .

cl eSS ll_y,—-;(,l + (I‘BT.Z')IZ-_.{(LS %r +(l = D)r . B

i
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2.18 Definition Let X be a metric space. All points and sets mentioned below
are understood to be elements and subsets of X.

(@) A neighborhood of p is a set N,(p) consisting of all ¢ such that

d(p, q) < r.for some r > 0, The number  is called the radius of N,(p).

(b) A point p is a limit point of the set E if every nexghborhood of p
contains a point g # p such that g€ E.

(©) If peE and p is not a limit point of E, then p is called an isolated
point of E.

(d) E s closed if every limit point of E is a point of E.

(e) A point p is an interior point of E if there is a neighborhood N of p
such that N < E.

(f) Eis open if every point of E is an interior point of E.’

(9) The complement of E (denoted by E°)is the set of all points pe X
such that p ¢ E. )

(h) E is perfect if E is closed and if every point of E is a hmlt point
of E.

(i) Eis bounded if there is a real number M and a pomt qe X such that

- d(pyq) <M forallpeE.

(j) E is densein X if every point of Xisa llmlt pomt of E, or a point of

E (or both). R . . ok

Let s fidte that in’RY’ nexghborhoods are segments, wher'*ﬂs in Rz nelgh-

borhuous are mtenors of c1rclcs
= S0

2419 Theotem Every nelghborhood is an open :er

i+ Proof, «Gonsider a nelghborhood E N,(p) and lel q be any pomt of E.
Then there is a positive.real number /4 such that, Ahet oo

d(p,q) == b
For all points s such that'd(g;s) < h; we have then
dp,s) <d(p,q) +d(g, 8) <r—hth=r ..

ik 80 that -s € E.- Thus g is‘aninterior point of E: - ¢

2.20 Theorem If p is a limit pom{ of a set K, then every nelghborhaod of p
contains infinitely many-poinisof Ei'

Proof f'~'~.'Suppbse “there is a nieighborhood ‘N “of p which contains only a
finite number of points of E. Let gy,...,q, be those points of N n E,
wlnch are dlstmct from p, and put

%oanioser o 2

r= min d(p,q.,) ' S5
1<ms<n .
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[we use this notation to denote the smallest of the numbers d(p,4,), ...,
d(p,¢,). The minimum of a finite set of positive numbers is clearly posi-
tive, so that r > 0.

The neighborhood N,(p) contains no point ¢ of E such that ¢ # p,
so that p is not a limit point of E. This contradiction establishes the
theorem.

Corollary A finite point set has no limit points.

2.21 Examples Let us consider the following subsets of R%:

(@) The set of all complex z such that lz] <1

(b) The set of all complex z such that [zl < 1.

(¢) A nonempty finite set.

(d) The set of all integers. .

(¢) The set consisting of the numbers 1/n (n=1,2,3,. ..). Let us note
that this set E has a limit point (namely, z = 0) but that no point of E is
a limit point of E; we wish to stress the difference between having a limit
point and containing one.

(f) The set of all complex numbcrs (that 1s R’)

(9) The scgmcnt (a, b)

Let us note that. (d‘, (e), (g) can be rcgardcd also as subsets of R'.
Some properties of these sets are tabulatcd below:

N

‘ N Closed n Perfect Bounded
(a) -~ No * -~ CNet T Yes
() Yes Yes / Yes
©) Yes No - Yes
) Yes - .. .No No
(e) - No - No Yes -
() 7w - Yes . Yes . . Yes . . No -
©)] No No - Yes.

In- (g), we'left"the second entry ‘blank; The reason is that the segment
(a, b is not open if we regard it as a subset of R2, but it is an’ open subset of R!.

2 22 Theorem Let (E.} bea (ﬁmte or. mﬁmre) coIIectton of sets E,. Then
@) ' YE)y= mm Vremooaa

Proof Let A and B be the left and right mcmbcrs of (20) Ifxe A, then

x ¢, E,, hence x ¢ E, foranya ‘hénce x e E¢ for every «, so that x e () EC.
Thus A < B.
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Conversely, if x € B, then x € E for every «, hence x ¢ E, for any «,

hence x ¢ |, E,, so that x € (|, E,)°. Thus B c A.
It follows that 4 = B.

223 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x € E. Then x ¢ E°, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° A N is empty, that is, N = E. Thus x is an interior point of E,
and E is open.

) Next, suppose E is open. Let x be a limit point of E°. Then every
neighborhood of x contains a point of E*, so that x is not an interior point
of E. Since E is open, this means that x € E°. It follows that Eis closed.

Corollary A set F is closed if and only if its complement is open.
224 Theorem

(@) For any collection {Ga} of open sets;\). G, is open.

(b) For any collection {F,} of closed .vets, N Fq is closed.

(c) For any finite collection G,, ..., G, of open sets, [\I= 1 G‘ is apen
(a7 For. anyﬁmte colleclmn Fl, veen By of clo:ed sets, U,h 1-, is closed
Proof Put G = U,
interior pomt
proves (a).

a Ifxe G then xeG for some a. Since x is an
G,, xis also an mtenor poml ‘of G, and G is open. This

By Theorem222 f i " ,

@n (ﬂ F) U (F2,

g e

and F{ is open, by 'Ineorem 2.23._ Hence (a)° 1mphes that (21) i 1s open 50
that ), F, is closed. E

s 1) Put

and fet N bethé nblghborhood *of x of radius F. Then Nc G‘ for i 0]
, n, so that N  H, and '} is open.. : .,
By taking complements (d) fo]lows from (c)

i 5N

e g el (‘gl-ﬂ) nw)

i)
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225 Examples In parts (c) and (d) of the preceding theorem, the finiteness of
1
the collections is essential. For let G, be the segment (— o —) n=123. e

Then G, is an open subset of R%. Put G = N2, G,. Then G consists of a single
point (namely, x = 0) and is therefore not an open subset of R. e
Thus the intersection of an infinite collection of open sets need not be open.
Similarly, the union of an infinite collection of closed sets need not be closed.

226 Definition If X is a metric space, if Ec X, and if E’ denotee the set of
all limit points of E in X, then the closure of Eistheset E=E U E'.

2.27 Theorem If X is a metric space and E = X, then

(a) Eisclosed,
(®) "E=E ifandonlyif Ei. is closed,
©) E < Ffor every closed set F = X such that E < F.

By (a) and (c), E1s the smallest closed subset of X' ‘that contains E

Proof

(@) Ifpe Xandp¢ E then pisneithera point of E nor a limit point of E.
Hence p has a neighborhood which does not intersect E. The complemcnt
of E is therefore open. Hence E is closed.

‘(b)° If E=E, (a) implies* that ‘E'is closed. If E'is closed then E’ cE
[by Definitions 2.18(d) and 2. 26),'hence'E = EY

(c) IfFls closed and F>E, then F:: F‘ hence FoE' Thus Fp E

228 Theorem Let Ebea nonempty set uf real umbers whtch is, baunded above

Lety—supE Then y'e E. Henceye?:‘thxs.

Compare this with the examples in Sec. :1.9.

. Proof. If:y e E then y'e E. vAssume y ¢ E:-For every h > 0 there exists
then a point x € E such that y — h.<:x <.y, for-otherwisey~ h.would be
:an upper bound of E. Thus yisa limit pomt of E Hence y eE..

229" ‘Remark Suppose E < Yc X, where X is a- metnc space.‘ 0 say that E

is'ari"open” subsét.of X ‘medns that to’each pointip € E:there is ‘assotiated a

positive number# such that the ‘conditions d(py q) ZryqgeX 1mp1y thatiqe El

But we have already observed (Sec. 2.16) that Y is also a metric space, so’that

“our deﬁnmons may equally well be-made within . Y./<To be quite explicit, let us
‘say that E:is operrelative to Y'if to each’p €'E there iS-associated airr >0 such

that g € E whenever d(p,q) <r andge Y. Example2; Zl(g) showed ‘that aset
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may be open relative to Y without being an open subset of X. However, there
is a simple relation between these concepts, which we now state.

2.30 Theorem Suppose Y < X. A subset E of Y is open relative to Y if and
only if E = Y n G for some open subset G of X.

Proof Suppose E is open relative to Y. To each p € E there is a positive
number r, such that the conditions d(p,q) <r,,qe Y imply that q € E.
Let ¥, be the set of all g € X such that d(p, q) < r,, and define

c=Uv,.

peE
Then G is an open subset of X, by Theorems 2.19 and 2.24.
Since pe V, forall pe E, it is clear that Ec G n Y.
By our choice of V,, we have Vyn Y < E for every p € E, so that
Gn YcE Thus E= G N Y, and one half of the theorem is proved.
Conversely, if G is open in X and E=G N Y, every pe E has a
nelghborhood V < G ThenV, n YcE, so that Eis open relative to Y.

coMPAcT SETS '7 i : Pn

2.31 -Definition By.an open. cover of -a set E m a metnc space X we ‘mean a
collection {G,} of open subsets.- of. X such tha t_;E < U .G,.

-~ 3
32 eﬁnmoni A subset K of a metnc space X i i$ said to be compact if every
open gover of K contajns a ﬁmte subcove?
ore exphcxtly,ﬁne requxrement i t 1f {G,} lS an open cover of K, then
there/are finitely many indices &, ..., &, such that

Ka Gy v uiGs

The 'notion of compactness s -of great 1mportance in analysus especnally
in connection with- contmuxty (Chap:4). ¢ E

It is clear that every finite sét is'’compact. The existence of a large class of
infinite compact sets in R* will follow from Theorem 2.41.

: We observed:earlier (in Sec. 2.29) that if £ = Y < X, then E may,be open
re]atxve to.Y, without being oper relative to X The property of. being open thus
depends.on the space in, whlch .E is embedded . The same is true of the property

. of being closed. - i

. Compactness, however behaves bctter as we shall now. see.. To formu-
late the next theorem, let us say, temporarily, that X is compact relatlve to Xif
the requirements of Definition 2.32 are met.. |
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233 Theorem Suppose K< Y < X. Then K is compact relative to X if and

only if K is compact relative to Y.

By virtue of this theorem we are able, in many situations, to regard com-
pact sets as metric spaces in their own right, without paying any attention to
any embedding space. In particular, although it makes little sense to talk of
open spaces, or of closed spaces (every metric space X is an open subset of itself,
and is a closed subset of itself), it does make sense to talk of compact metric
spaces.

Proof Suppose K is compact relative to X, and let {¥,} be a collection
of sets, open relative to Y, such that K = {J; V.. By theorem 2.30, there
are sets G,, open relative to X, such that ¥, =Y n G,, for all a; and since
K is compact relative to X, we have

@) K< G, U UG,
for some choice of finitely many indices ay, ..., o,. Since K < Y, (22)
implies '

@3 KcVyu-uV,

This proves that K.is compact Telative to Y.

Conversely, suppose X is compact relative to Y, let {G,} be a col-
lection of open subsets of X which covers K, and put Ve =Y N G,. Then
(23) will hold for some choice of ay, % @, and since ¥V, < G,, (23)
implies (22). . :
ik completes the proof

Compact subsets of metric :paces are closed.

,,;Proof Let K be a compact subset f a metnc space X. We shall prove

; V\ {that the complement of K i§ an’ open éubset of X

Suppose p € X, pé K. Ifge K, let Ve and W be nelghborhoods of p
and g, respectively, of radius less than -kd(p, q) [see Definition 2.18(a)].
_Since K is compact, there are finitely many pointsg,, ..., g,in K_cueh that

Ke Wy 0 UMW =W

A V=V avennn Vg othen V- is -a neighborhood. of p. which does not
-:rintersect :W Hence Vc: K¢, so that p-is an.interior. ponm of K°. The
theorem follows. :
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open cover Q of K. Since X is compact, there is a finite subcollection ® 2.39 Theorem Let k be a positive integer. If {I,} is a sequence of k-cells such
of Q which covers X, and hence F. If F*is a member of @, we may remove that I, > I, (n=1,2,3,...), then (\? I, is not empty.

it from ® and still retain an open cover of F. We have thus shown that a . .
finite subcollection of (¥} covers . Proof Let /, consist of all points x = (x, ..., x;) such that
a4,;<x<b,, (<j<k;n=123,..),

Corollary If Fis closed and K is com act, then Fn K is compact.
4 omp and put I, ;=[a,; b,,]. For each j, the sequence {I,} satisfies the®

Proof Theorems 2.24(b) and 2.34 show that F K is closed; since hypotheses of Theorem 2.38. Hence there are real numbers xj(1 < < k)
F n K < K, Theorem 2.35 shows that F n K is compact. such that

a,;<xf<b,; (<j<k;n=123..).
236 Theorem If{K,} is a collection of compact subsets of a metric space X such
that the intersection of every finite subcollection of {K,} is nonempty, then (\ K,
is nonempty.

Setting x* = (x}, ..., x{), we see that x* € I, for n= 1,2,3,.... The
theorem follows.

_ Proof Fix a member K, of {K,} and put G, = K. Assume that no point
of K; belongs to every K,. Then the sets G, form an open cover of K, ;
and since K is compact, there are finitely many indices ay, ..., «, such .
that K; ' G,, U*-- U G,,. But this means that

KinK,n-nk,

2.40 Theorem Every k-cell is compact.

Proof Let I be a k-cell, consisting of all pomts x= (xl, .., X;) such
that a; <x; < b; (1 s;<k) Put :
. S 12 e
= {Z (bj = “j)z} .

Then ]x-—y[ <5 ifxel yel

. .Suppose, to get a contradiction, that there extsts an opsn cover {G,}
of 7.which. contains no ‘finite subcover of I. .Put ¢; =(a; + b))/2. The
intervals [a;, ¢;] and [c;, b;] then determine 2% k-cells Q, whose union is I.
At least one 'of these sets Q,, call it I;; cannot be covered by any finite
subcollection of {G.} (otherwise I could be so covered). We next subdivide
A and continue, the. process. .We obtain a'sequence {I } with the following
propemes

- (o) Ioh'> oIy : :

(b) I, is not covered by any finite subcollectlon of (G,}
(o) ifxel, andyel,,,thcnlx—y|<2 "5 .

is empty, in contradiction to our hypothcsis.

Corollary If {K }is-a sequence of nonempty cor"nact sets such that K > I(,,H
(n =1, 2 3 ), _Ihen NY K, is not emply

2.37 Theorem If E is an infinite subset of a compact set K rhen E'hias a limit
pointin K.
Proof I}ﬂo ‘point of K:were ‘a-limit.point of \E; theneach g e:K would
_have a nelghborhood V, which contains at most one point of E (namely,
q, if g€ E). "It is clear that no finite 'subcollection of{ .} can cover E;
and the same is true ofK since E c K. ThlS contradncts the compactness

© By (a) and Theorem' 2.39, there i isa pomt x* whlch lies in every i
For some ‘@, x* €G,.  Sincé ‘G- is operi, “thete ‘exists r>0 such that
|y —x*| <r implies that ye G,. If n is so large that 27"5 <'r (therc is
such an n, for otherwise 2" < §/r for all positive .integers n, which is
Aabsurd since ‘R is archimedean), then (c) implies that-I; ‘< G, whxch con-
tradicts (b). RRRTICT

This completes the proof . ‘\

238 ““Theorem If (I} is'a 'séq'uér;cédr;f intervals in RY, siich that I, > I,

(n=1,2,3,...), then (-1, is not empty. .-

~'Proof ’Ifl ={a,, b;), let E be the sét of all a,. Then E is nonempty and .
bounded tabove: (by.bx) Let x-be the.sup of E. If-m and n are positive

Tk (L T P

integers, then

a Sam+nsbm+nsbm, it . Ea s T
that x.< b, for each m. Since it is obvious that ap < X, We, see that The equlvalcnce of (a) and (§)-in the next theorcm is known as thc Heine- .

Q. that X3 Jm. 101 %N o Borel theorem. :

xE L form=1,23pcec - e e

AT
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2.41 Theorem Ifa set E in R* has one of the following three properties, then it
has the other two:

(@) E s closed and bounded.
(b) Eis compact.
(¢) Every infinite subset of E has a limit point in E.

Proof 1If (@) holds, then E < I for some k-cell 7, and (b) follows from
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (c). It
remains to be shown that (c) implies (a).

If E is not bounded, then E contains points x, with

x| >0 (n=1,2,3,...).

The set S consisting of these points x, is.infinite and clearly has no limit
point in R¥, hence has none in E. Thus (c) implies that E is bounded.

If Eisnot closed, then there is a point x4 € R* which is a limit point
of E but not a point of E. For n=1,2,3,..., thére are points x,€ £
such that |x, — xo| < 1/n. Let S be the set of these points x,. Then S is
infinite (otherwise |x, = X,| Wwould have a constant positive value, for
infinitely many n), S has x, as a limit point, and S has no other limit
pomt in R* For ifye R y #Xo, then

{x ““Yl 2 |Xo yl= lx —Xol \
Y
2 |x0 Y| —/‘2"|Xo—)’l
R R 3 Yy R . i H) i
"'for all biit ﬁmtely many n; this"shows that y-is not a’ hmn. pomt of §
(rhcorel?:mz;(})l)as no limit pomt in E; hence E must be closed if (¢) holds.

)
il

We should remark at this pomt that (b) and (¢) are equxvalent in any
metric space, (Exercise 26) but that (a) does not, Jin general, imply, (6) and (c).
Examplcs are furmshed by Exercxse 16 and by 'the space .2’ ‘which is dis-
cusscd m Chap 11 A .

it

) (.l
Bokys

242 Theorem (Welerstrnss) Every baundedumﬁmle subset of R" ha: a limit
point in R~ o e

Proof Being bounded, the set £ in questxon isa subsct of ak-cell 7= R
. By, Theorem_ 2.40,.I is ‘compact, and, so -E has a limijt pomt in I, by
Theorem 2.37. fs "
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PERFECT SETS

2.43 Theorem Let P be a nonempty perfect set in R, Then P is uncountable.

Proof Since P has limit points, P must be infinite. Suppose P is count-
able, and denote the points of P by x, X;, X;,.... We shall construct a
sequence {¥,} of neighborhoods, as follows.

Let ¥, be any neighborhood of x,. If ¥, consists of all y € R* such
that |y — x;| < r, the closure ¥; of ¥, is the set of all y e R* such that
ly =x| <r.

Suppose ¥, has been constructed, so that ¥, n P is not empty. Since
every pomt of Pi 1s a limit point of P, there is a neighborhood ¥,,, such
that (i) V,,, < V,, (i) x, ¢ V,+1» (iii) ¥,4y N P is not empty. By (iii),
Va4 satisfies our induction hypothesis, and the construction can proceed.

Put K, = V, n P. Since V, is closed and bounded, V, is compact.
Since x, ¢ K, 4, no point of P lies in NY K,. Since K, < P, this implies
that ﬂ, K, is empty. But each K, is nonempty, by (iii), and X, :KHH,
by (i); this’ conlradxcts the Corollary to' Theorem 2.36.

Corollary  Every interval [a, b] (a < b) is uncountable. In particular, the set of
all real numbers is uncountable.

2,44 The Cantor set The set which we are now going to construct shows
that there exist perfcct sets in R! which contain no segment.
@ =7 Let Ey be-the interval-[0, 1] Rcmove the segment ‘4, %), and let E; be

‘the union of the mtervals : O

[, i 1]

Rcmove the middle thirds of these intervals, and let E, be the union of the
intervals

o b 0,41 (.31 (5, 31, 5. 1)
Continuing in this way, we obtain a sequefice of comipact sets E,, such that

. @ E=2E>E> ;
(b) E, is the union of 2’I intervals, each of Icngth 3 s

* The set

is called the Cantor set. P is clearly. compact, and Theorem 2.36 shows that P
is not empty.
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No segment of the form

249 (3k+1 3k +2
3" T)

where k and m are positive integers, has a point in common with P, Since every
segment («, ) contains a segment of the form (29), if

f—«

3""'
¥ g

P contains no segment.
To show that P js perfect, it is enough to show that P contains no isolated
point. Let x € P, and let S be any scgment containing x, Let 1, be that interval

“endpoint of I,, such that X, # X.
It follows from the construction of P that x, € P. Hence x is a limit point
of P, and P is perfect. = . ‘ B
»* One of the most interesting properties of the Cantor set is that it provides
us with an example of an uncountable set of measure zero (the concept of
measure will be discussed in Chap. . .

CONNECTED SETS

2.45  Definition -qu sﬁbsefs A vah,dﬂ—B_of;a r'netricf space X are said to be
separated if both A N B and 4 N B are empty, ie., if no point of A lies in the
closure of B and no point of B lies in the closure of 4.

4 set E < X is said to be connected if E is not a union of two nonempty
separated sets. . : ot ey Cem gt : e
2.46 Remark Separated sets are of course disjoint, but disjoint sets need not
be separated. For example, the'interval [0, 1] and the segment (1, 2) are not
separated, since 1 is a limit. point, of ({, 2). However, the segments.(0,1).and
(1, 2) are separated. . -t B »

The connected subsets of the line have a particulatly simple structure:

2.47 Theorem A subset E of the real line'R" is connected if and only.if it has the
Sfollowing property; If xe E, ye E, and x < z < Y, then ze E.
Proof If thereexist x € E, y € E; and some z € (x, y) such that z ¢ E, then
E=A, v B, where o ) _
Y 4 EEn(-0,29, " B,=En(z ). e

2

-]
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Since xe 4, and y e B,, A and B are nonempty. Since 4, < (- ®, 2) and
B, = (z, o), they are separated. Hence E is not connected. = [

To prove the converse, suppose £ is not connected. Then there are
nonempty separated sets 4 and B such that 4 U B = E. Pickxed, ye B,
and assume (without loss of generality) that x < y. Define

z=sup (4 N [x, y)). ’
By Theorem 2.28, z ¢ A; hence z ¢éB. In particular, x < 7 <y
If 2 ¢ 4, it follows that x < z <yandz¢E.
If ze A, then z ¢ B, hence there exists z, such that z <z <yand
2, ¢ B. Then x <z, <y and z ¢ E.

EXERCISES

1.
2,

zero, such that

Prove that the empty set is a subset of every set,
A complex number z is said to be dalgebraic'if there are integers go,"... » @, not all

@+ aridy gy, 2o,

" Prove that the set of all algebraic numbers is countable. Hint: For every positive

integer N there are only finitely many equations with
~nt ao] + Jagl- o0 4 Ja,| = N.-

. Prove that there exist.real numbers:which-are not.algebraic.

. Is the set of all irrational real numbers countable? - 8

: Construct a bounded set of real numbers with exactly three limit points.

- Let E” be the set of all limit points of a_set £, Prove that E” is closed;: Prove that

= *E.and £ have the same limit points.. (Recall that £= EU E”.) Do Eand E’always

«(a) Prove that E%is always.open. .. .y e g

have the samie limit-points? &
Let Ay, 42, Ay, . . be subsets of a metric space. e
(a) If B, = (Ji.1 Ai, prove:that B, =i A, forn=1, 2;3, .00
(6) 1If B= Y&, 4., prove that B> Us: 4.. .
Show, by an example, that this inclusion can beiproper.

..Is every. point.of. every open.set E< R? a limit point of E? Answer the same

question for closed.sets in -R2,

‘9. Let E° denote the set.of all interior points; of-a, set"E., [See Definition 2.18(e);

E° is called the interior of E]

(b) Prove that E is open if and only if E°=E, ‘

(o) If G.<.Eand G is open,;prove that G < E%| . NEY e ey :
(d) Prove that the complement of E° is the closure of the complement of E.
() Do E and E always have the samé interios ? A

. (/) Do'Eand E? always have the same closures? . .
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10. Let X be an infinite set. For pe X and g ¢ X, define
1 @ifp#4q)
0 (if p = q).
Prove that this is a metric. Which subsets of the resulting metric space arc open?
Which are closed? Which are compact?
11. For x € R' and y € R!, definc
di(x, y) = (x = y)?,
da(x, ) = VTx =],
ds(x, y) =|x* = y?[,
di(x, y) =|x—2y|,

) = 222

d(p,q) =

. Determine, for cach of these, whether it is a metric or not. j
12. Let X < R* consist of 0 and the numbers 1/n, for n=1, 2, 3,..., Prove that Kis
compact directly from the definition (without using the Heine- Borel theorem).
13. Construct a compact sct of real numbers whose limit points form a countable set.
14. Give an example of an open cover 'of the segment (0, 1) which has no finite sub-
cover.

15. Show that Theorem 2.36 and its Corollary become false (in R', for cxumplc) if the
word “compact” is replaced by “‘closed” or by *‘bounded.” g

16. Regard Q, the sct of all rational numbers, as a metric space, wuh d(p,q) =|p ,—.‘ql.
Let E.be the set of all pe.Q.such that 2 <p? <3..Show that E is closed and
«-bounded.in Q, but that E is not compact. -Is.E open inQ? o] :

17. ,Let“E be the set of all x € [0. 1] 'whose decimal expansion contains.orily:the digits
4 and 7. Is E countable? Is E densc in [0, 1]? Is E compact? Is E perfect?.

18. Is there a nonempty perfect set in R*.which contairis no rationdl number? ..

19. (a) If A and B are disjoint closcd scts in some metric spacc X, provc thnl lhcy

are separated. . ( ¢ ,', v.u : T
Prove the samic for disjoint open sets. . . i 1

((:)) Fix p € X, >0, definc A 10 be the set of all g € X for: WhICh d(p, q) <8, define

‘B similarly, with > in place of <. Prove that A'and B.are scparated;* - +*

f

\'.(d) Prove that every c¢onnected metric space with: nt lcast two pon‘ql_?‘ is uncpum

nt: Use (c).
20. :ﬁ?clglurcs and interiors of connected scts nlwnys conncclcd? (Ldok nl subscts
1) a S
Py be scparntcd subscls of some R' supﬁosc ac A,bc B, and défine

21. LclAandB : . s
Sadvih (,)=(1_{)n+1b ) D

for 1€ RY. Put Ao =p~'(A), Do =p=!(8). [Thus r€ Aq if and only if p{t) ¢ A.]

22,

23,

24,

25

26.

27,

28.

=

29.
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(a) Prove that Ay and By are scparated subsets of R,

(h) Prove that there exists 1, ¢ (0, 1) such that p(te) ¢ A B,

() Prove that every convex subset of R* is connected,

A metrle space is called separable if 1t containg 4 countable dense subset, Show
that R* Is separable, /lint: Consider the set of points which have only rational
coordinates,

A collection (Vi) of open subsets of X is said to be a base for X if the following
is true: For every x ¢ X and every open set G & X such that x @ G, we have
xG V, < G for some a, In other words, every open set in X is the union of a
subcollection of (V).

Prove that every separable metric space has a countable base, Iint: Tuke
all neighborhoods with rational radius and center in some countable dense subset
of X,

Let X be a metric space in which every infinite subsct has a limit point, Prove that
Xis separable. /lint: Fix 8 >0, and pick x, ¢ X, Having chosen xy,..., x,6 X,
choose x4, € X, If possible, so that d(x, xs4,) =8 for (w1, ...,/ Show that
this process must stop after a finite number of steps, and that' X can thercfore be
covered by finitely many ncighborhoods of radius 8. Take 8 = 1/n(n=1,2,3,...),
and consider the centers of the corresponding neighborhoods,

Prove that every compact metric space K has a countable base, and that K is
therefore separable. Hint: For every positive integer #, there are finitely many
neighborhoods of radius 1/n whose unlon covers K.

Let X be a metric space in which cvery infinite subsct has limit point. Prove
that X is compact, Hint: By Exercises 23 and 24, X has a countable basc. It
follows that every open cover of X has a countable subcover (G}, nes1,2,3,....
If no finite subcollection of {G,} covers X, then the complement F,of G, U ** U G,
is nonempty for cach n, but (F, is empty. If E is a set which contains a point
from cach F,, consider a limit point of E, and obtain a contradiction,

Define a point p in a metric space X to be a condensation point of a set E < X if
cvery neighborhood orp contains uncountably many points of E.

Suppose £ < R*, [ is uncountable, and let P be the set of all condensation
points of £. Prove that P is perfect and that at most countably many points of I
are not in 2. In other words, show that P¢ A~ E is at most countable. Hint: Let
{Va)} be a countable base of R*, let H be the union of those V, for which £ n V,
is at most countable, and show that P = e,

Prove that every closed set in a separable metric space is the union of a (possibly
empty) perfect sct and a sct which is at most countable, (Corollary: Every count-
able closed set in R* has isolated points.) [ffint: Use Exercise 27,

Prove that every open set in R' is the union of an at most countable collection of
disjoint segments. Hint: Use Exercise 22,
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30. Imitate the proof of Theorem 2.43 to obtain the following result:

If R*= {J7F., where each F, is a closed subset of R*, then at least one F,
has a nonempty interior.

Equivalent statement: 1f G, is a dense open subset of R, forn =1, 2, 3,
then (\¥G. is not empty (in fact, it is dense in R¥).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for the general
case.)

v

NUMERICAL SEQUENCES AND SERIES

As the title indicates, this chapter will deal pnmanly with sequences and series
of complex numbers. The basic facts about convergence, however, are just as
easily explained in a more, general setting. The first three sections will therefore
be concerned with sequences in euclidean spacgs, or even in metric spaces.

CONVERGENT SEQUENCES

3 1 Definition A sequence {p,)} in a metnc space X is said to converge if there
isa point p € X with ‘the followmg property For every &> 0 there is an‘integer
N such thatn > N 1mphcs that d(p,, p) < &. (Here d denolcs the distance in X.)

In this case we also say that {p,} converges to p, of that pis the Timit of
(p,,} [see Theorem 3. 2(b)] and we write p, ~»p, or

R T g 5 -

lim pn = P

n=co

AIf {p,) does not ‘converge, it is said to divé}ge. .
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It might be well to point out that our definition of *‘convergent sequence”
depends not only on {p,} but also on X; for instance, the sequence {1/n) con-
verges in R' (to 0), but fails to converge in the set of all positive real numbers

[with d(x,») = |x —»|]. In cases of possible ambiguity, we can be more
precise and specify *‘convergent in X rather than ‘“‘convergent.”

We recall that the set of all points p, (n=1,2,3,..)) is the range of {p.}.

The range of a sequence may be a finite set, or it may be infinite. The sequence
{pn} is said to be bounded if its range is bounded.

As examples, consider the following sequences of complex numbers
(that is, X = R?):
(@
®
©
@)

()

Ifs, = 1/n, thenlim,_ 5, = 0; the range is infinite, and the sequence
is bounded.

If 5, =n? the sequence {s,} is unbounded, is divergent, and has
infinite range. :

If s, =1+ [(— 1)"/n), the sequence {s,} converges to 1, is bounded,
and has infinite range. '

If s, = i", the sequence {s,} is divergent, is bounded, and has finite
range.

Ifs,=1(1n=1,2,3,..), then {s,} converges to 1, is bounded, and
has finite range.

- We now summarize some important properties of convergent sequences
in metric spaces.

3.2 Thebrem “Let {pi} be ‘s séqiicnce i d'metric'space X,
B % s s To41 Rl Db

(@) {p) conterges top € X if and’only
' p, for all'but finitely ihany n'l" "
) IfpeX, p' eX, andif{p,} converges to p and to p', then p’ = p.
(¢) If{p,} converges, then {p,} is bounded.
@) IfEc Xandif pis alimit point of E; 1(79n.‘111§(g_[s.a sequence{p,} in E
such that p =limp,. ’

n=wo

ifedery nezghbbr?;béd'd_f P céﬁiqi&y{

wEznue

" (a) Suppose, p, = p and let ¥ be a neighiborhood of p._For
o gome > 0, the, conditions, d(g, p),< &g € X, imply g e V. Correspond-
ing.fo this &, there exists’ i such, that g >N implies d(p,, p). <. Thus

n > N implies p, € V. T g P DTS * gt S0 =l
Conversely, suppose every' neighborhood of p contains all but

finitely many of the p,. Fix £ > 0,.and let ¥ be the set of all g € X such
that d(p, g) <e. By assumption, there exists N (corresponding to this V)
such that p,e V if n 2 N. . Thus d(p,,p)<c if n2 N; hence p, —p.
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(b) Lete> 0 be given. There exist integers N, N’ such that

€
n>=N implies d(p,,p)< 3

€
n=N' implies d(p,,p’) < 5
Hence if n > max (N, N'), we have

d(p, p') < d(p, p,) + d(ps, P') <.

Since ¢ was arbitrary, we conclude that d(p, p’) = 0.

(¢) Suppose p,—+p. There is an integer N such that n>N
implies d(p,, p) <1. Put

r=max {1, d(py, p), ..., d(Pw> P)}-
Then d(p,,p) <rforn=1,2,3,.... '. ) )

(d) For each positive integer n, there is a point p, € E such tha.t
d(p,,p) <1/n. Given.¢>0, choose N so that Ne>1. If n>N, it
follows that d(p,, p) <¢&. Hence p, = p.

This completes the proof.

For sequences in R* we can study the relation between convergence, on
the one hand, and the algebraic operations on the other. We first consider
sequences of complex numbers.- i :

3.3 Theorem Suppose {E,.}, {t.} are compIéX‘ sequences, and lim,._ s, =5,
lim, o, 1, =1.-Then :
(@) lim(s,+t)=s+1¢
"o

(b) limecs, = cs, lim (¢ + 5,) = ¢ + 5, for any number c;
n-w

n=cw
(© lims,t, = st;

new

@ lim L=, provideds, 0 (1=1,2,3,..), and s 0.
rmw Sy S :
Proof Nk
(@) Given & > 0, there exist:integers N;, N, such that
. €
n>N, implies |s,—s| < 3

€
n>N, implies |t,— ;\ < 3
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If N = max (N, N,), then n > N implies % (b) Suppose {x,}, {y,} are sequences in R*, {B,} is a sequence of real numbers,
|(s..+t,.)—(s+1)|s|s,,_s|+|,,__,| el § and X, ~X,Y, >, B, B. Then ~
This proves (a). The proof of () is trivial. lim(x,+y)=x+y, limx,-y,=x-y, limp,x,=px :
3 n—+xo n-m n-o
(c) We use the identity :
) : Proof Pt
Sata = S1= (5, = 5ty — 1) + 5(t, — 1) + £(s, — 5). i = el
Given ¢ > 0, there are integers Ny, N, such that % (@) If x, —x, the inequalities
_ - < .
n le implics ls. _Sl < \/e, ldj.n Jl = lX.. Xiy
k
n2N, implies |~ [ < \/; £ z;})u}c]};l?sllow immediately from the definition of the normin R, show that
If we take N = max (N, N;), n > N implies Z Conversely, if (2) holds, then to each &> 0 there corresponds an
b1 5 integer N such that n > N implies
[(sn =)t — 1)] <, '
so that E laj,, —al <\%}—c (1<jgk).
lim (s, = s)(t, —1) = 0. tH e : . ;
new® . . Hence n > N implies .
‘We now apply (a) and (b) to (1), and conclude that 2 . 12
- . . — — : ¢
. ; y lim (5,1, —s) =0. . S . . . 1, xI {; lal'_" >a‘,| J =
’ » . on . = ¥ H ’ . TR B e .‘ " 3
‘@) Choosi h that _ . ol % . so:that x,;— x: This proves (a).
@) ing m such that |s, — 5| <4|s|.if n.>m, we see that i , Part (b) follows from (a) and Theorem 3.3
' sl >3lsl (2 m). e 2 BT
i Given € > 0, there is an integer N > m such that n > N implies Fe s @
= [z 5] <3 [sfe. K A SUBSEQUENCES
g .
| Hence, forn > N, N 3.5 Definition Given a sequence {p,}, consider a sequence {n,} of positive
I 1 S, — S 2 ’ . 15 integers, such that n; <n, <ny <---. Then the sequence {p,} is called a
s 5,8 . I_sl_z s, —s| <e. :ub:equence of {p,,} If (p,“} convcrges its limit is called a subsequennal limit
1% % betn & of p. « - -
. : It is clear that {p,,},comerges to p if and only if :very subscquence of
3.4 Theorem : i g {p.} converges to p. We leave the details of the proof to the reader.
(@) Supposex, € R*(n=1,2,3,.:.)and -, - : : %"é Se i sl v . e
X0 = (g eeer T '{ 3.6 Theorem T &
| Then {x,} converges to x = (ay, ..., ak) if and only if S (@) “If {p,} is:a sequence in a compact miefric spdce X, thén some sub- :
' : ‘' ‘sequence of {p,} converges to a point of X.
@ lmey,—a,  (<j<k), | eq f (P} g point of
LT s

(b) Every bounded sequence in R* contains ‘a’conbergént subsequerice.
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Proof

(@) Let Ebe the range of {p.}. If Eis finite then there is a peEanda
sequence {n} with n; <n, <n, < *++, such that

Pay =Pp,=:""=p.

The subsequence {P.} so obtained converges evidently to p.

If E is infinite, Theorem 2.37 shows that E has a limit point p € X.
Choose n, so that d(p, p.,) < 1. Having chosen Ay, ..., M-y, We see from
Theorem 2.20 that there is an integer n; > n;_; such that d(p, Pa) < 1/i.
Then {p, } converges to p.

(b) 'This follows from (a), since Theorem 2.41 implies that every bounded
subset of R* lies in a compact subset of Rt .

3.7 Theorem The subsequential limits of a sequence {p,} in a metric space X
Jorm a closed subset of X.

"Proof Let E* be the set of all subsequential limits of {p,} and let ¢ be a
limit point of E*. We have to show that g € E*.

Choose n, so that p,, #¢. (If no such n, exists, then E* has only
one point, and there is nothing to prove.) Put 6 =d(q,p.,). Suppose
Ay, ..., Ny are chosen. Since g is a limit point of E*, there is an x € E*
with d(x,q) <27's. Since x € E®, there is an n,>n,., such that
d(x, p,) <z7'5. Thus SRR § “ .

d(g, pa) < 2'715
fori=1,2,3,.... This says that {p,} converges to g. Hence g € E*.

CAUCHY SEQUENCES

3:8 Definition A sequence {p,} in a metric space X is said to be n'Cauchy
sequence if for every ¢ > 0 there is an integer N such'that d(p, pa) <ceifnz N

N o o . . .
and mlnZ our discussion of Cauchy sequences, as well as in other situations
which will arise later, the following geometric concept will be useful. . -

iti bset of a_metric space X, and let S be
3.9 Definition Let E be a nonempty. subs : .
the set of all real numbers of the form d(p,q), with p € E and g € E. The sup
of S'is called.the diameter of E. g

T T TN

A

£3

3
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If{p,}is a sequence in X and if Ey consists of the POINtS Py, Py sy, Pys s, .. o

it is clear from the two preceding definitions that {p.} is a Cauchy sequence
if and only if

lim diam E, = 0.

N~
3.10 Theorem
(@) If Eis the closure of a set E in a metric space X, then
diam E = diam E.

&) If K, is a sequence of compact sets in X such that K,o K

(n=1,2,3,..)andif s
lim diam K, =0,
nw

then (\PK, consists of-exactly one point.

Proof '

(@) Since E < E, it is clear that
diam E < diam E.

Fix ¢ >0, and choose p € E, q € E. By the definition of E, there are
points p’, 4", in E such that d(p, P)<¢,d(q,q") <e. Hence

dp.q) = d(p.p') + d(p’' ) + (g, g)
<2e+d(p’,q") < 2¢ + diam E,
It follows that ‘ o
diam E < 2¢ 4 diam E,
and 'since ¢ was arbitrary, (a) is proved: . '
() Put K= (7K,. By Theorem 2.36, K is not empty. If K contains

mor¢.than one point, then diam K > 0. But for each n, K; > K, so that
diam K, > diam K. This .contradicts the assumption that diam K, — 0.

3.11 Theorem

““(a) Inanymetric-space X;ever 'y convergent sequence is a Cauchy sequence.
b) If X is a compact metric space and if (p,} is a Cauthy sequerice in X,
« then {p,} converges to sone point of X.
(c) In R, every Cauchy sequence converges.

Note: Thc difference between the definition of convergence and
the definition of a Cauchy sequence is that the limit is explicitly involved
in the former, but not in the latter. Thus Theorem 3.11(b) may enable us
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to decide whether or not a given sequence converges without knowledge
! of the limit to which it may converge.
The fact (contained in Theorem 3.11) that a sequence converges in
\ R* if and only if it is a Cauchy sequence is usually called the Cauchy
criterion for convergence.

Proof

(@) If p,—p and if £> 0, there is an integer N such that d(p, p,) <€
for all n > N. Hence

d(py,s Pm) < d(pa, p) + d(p, pr) < 26

as soon as n > N and m = N. Thus {p,} is a Cauchy sequence.

(b) Let {p,} be a Cauchy sequence in the compact space X. For
N=1,23, ..., let E, be the sct consisting of py, Py+1s Pna2seee-
Then
lim diam Ey =0,
Now . . )
by Definition 3.9 and Theorem 3.10(a). Being a closed subset of the
compact space X, each Ey is compact (Theorem 2.35). Also Ey 2 Eyyy,
: so'that Ex o Eyiy. ) ¢ X

Theorem 3:10(b) shows nuw that there is‘a unique p € X which lies
inevery Ey. . | )

Let ¢>0 bé given. By (3) there is an integer N, such that
diam Ey < ¢ /if -N = No. ‘Since p € Ey, it follows that d(p,q) <e for
every g € Ey, hence for every ge Ey. In other words, d(p, p,) <¢ if
n > No. This says precisely that p, = p.

3

(c) Let {x,} be a Cauchy sequence in R¥, Define Ey as in' (b), with x;
.- in place of p;: For some Ny'diam Ey.<1.:The, range of {x;} is the.union
- .of .Ey and the finite set {X;/ ..., Xy-1}: Hence: {x,} is bounded. Since
every. bounded subset of R* ‘has compact closure in R* (Theorem 2.41),
(c) follows from (b).

3.12 , Definition. . A metric space in which every Cauchy sequence.converges is
said to-be.complete. P eV , o e N

Thus Theorém 3.11 says that all compact metric spaces.and all Euclidean
spaces are complete. Theorem:3,11-impli€s also that.every closed subset E of a
complete metric space X is complete. (Every Cauchy sequence in E is a Cauchy
sequéficein’ X, henlce it converges to somé p €%, 'and actually p € E since E is
closed.§* An example of a metric space which is not completé'is the space of all
fitional fiumbers, with'd(x, ) = |x — y|. g R i

o A RN
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Theorem 3.2(c) and example (d) of Definition 3.1 show that convergent

sequences are bounded, but that bounded sequences in R* need not converge.

i i i i ] ivalent to
However, there is one important case 1n which convergence is equl to

. ; .
boundedness; this happens for monotonic sequences in R%

) Y ) . .
413 Definition A sequence {s,} of real numbers is said to be .
& (a) monotonically increasing if s, < S0y (1 =1, 2,3,...);
(b) monotonically decreasing if5, 2841 (n=1,2,3,...).

The class of monotonic sequences consists of the increasing and the

decreasing sequences. ')
F

3.14 Theorem Suppose {s,} is monotonic. Then {s.} converges if and only if it
is bounded.
Proof Suppose 5, < 5,43 (the proof is analogous in the other case).
Let E be the range of {s,}. If {s,} is bounded, let s be the least upper
bound of E. Then ’ _
5, S8 n=1,273,..).
For every ¢ >0, there is an integer NV such that
S—E<SNSS, )
for otherwise s — ¢ would be an upper bound of E. Since {s,} increases,
n > N therefore implies =~ '
) s—E<S, <5, N
which shows that {s,} converges (to 5.
The converse follows from Theorem 3.2(c). )

UPPER AND LOWER LIMITS
3.15 Definition Let {s,} be a sequence of+real ‘numbers *with:the following
’:rqperly: For“every redl M there is an integer N sich-that n > N implies
5,5 M. ‘We then write R EN WL

B Sy 0,

Similarly, jf for every real M there is :_s'n‘inleger N suéi\,tha_i:n_zN implies”
sy < M, we write . y

5y — 0.

FRASS A
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It should be noted that we now use the symbol — (introduced in Defini-
tion 3.1) for certain types of divergent sequences, as well as for convergent
sequences, but that the definitions of convergence and of limit, given in Defini-
tion 3.1, are in no way changed.

3.16 Definition Let {s,} bc a sequence of real numbers. Let E be the set of
numbers x (in the extended real number system) such that s, —x for some
subsequence {s,.}. This sct E contains all subsequential limits as defined in
Definition 3.5, plus possibly the numbers + o0, — 0.

We now recall Definitions 1.8 and 1.23 and put

s*=sup E,
=infE.
The numbers s*, s, arc called the upper and lower limits of {s,}; we use the
notation
lim inf s, = 5.

‘n=o

lim sup s, = 5*,

n— o
i ‘ . b e . ,
3.17 Theorem Let {s,} be a sequence of real numbers. Let 'E and s* have the
same meaning as in Definition 3.16. Then s* has the following two properties:

(a) s*€E.
) If x > s*, there is an'infeger N such that ri 2N implies s, < x.

Moreover, s* is the only numbér with the properties (a) and (b).

"of éo'\'jrsc'.'z’rn‘analdﬁoﬁis"rzé‘suft'"is true'for 55, Rttt
Proof o
(a) Ifs* = +o0,then E is not bounded above; hence {s.}is not boundcd

above, and there is a subscqucncc {.\',,k) such that 5, > +00.,
If s* is real, then E is bounded dbove, and at’ lcast one subsequentral

limit exists, so that (a) follows from Theorems 3.7 and 2.28.

If s* = —oo, then E contains only one element, namely —oo, and ‘
Hence;, for any real M, 5,3 M; for.at

there is no subsequential limit.
most a finite number of values of n, so that s, - —co.
© This establishes (a) in;all.cases. ., .. . ;1

y = x > s*, contradicting the definition, of s*.
Thus s* satisfies (a) and (b).

dne e show the” ‘uniqieness, suppose ‘thete aré ‘two numbers, P a“d ¢

which satisfy (a) and (6), and suppose p <g. Choose x suchithat p <'x < g:
Since p satisfies (5), we have s, < xforn N. But theng cannot satisfy (a). -

..:(b) Suppose there is a. number x>s .such that .r >x for 1nﬁmte1y
many values of n. In that case, there is a number yeE such that
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3.18 “Examples
(a) Let {s,} be a sequence containing all rationals. Then every real
number is a subsequential limit, and )
lim sup s, = + 00, liminfs, = —o0.

n=+ a0 n=»00
) Lets,=(=1"/[1 +(I/n)]). Then
limsups, =1, liminfs, = —1.
LEX ] A=+ 00

(c) For a real-valued sequence {s,}, lim 5, = 5 if and only if
n=00

lim sup s, = lim inf s, = 5.

[ o
We closc this section wnh a theorem which is useful, and whose proof is
quite trivial:

3.19 Theorem Ifs, <1, forn2 N, where Nis fixed, then
liminfs, <liminft,,

Liad A=
limsup s, < limsup £,i'
Liad Liad"-]

SOME SPECIAL SEQUENCES !

Wc shall now computc the limits of some sequences whrch occur frequently.
he proofs will all be based on the following remark: If 0 < x, < syforn2 N,
Where N is some fixed number, and if 5, =0, then x, —0.

3.20 Theorem

(a)- lfp>0,‘then lim nl'=0. ‘ . @ e v S

®) Ifp>0, xhenumf—l

..:(d) pr > 0 anda is reaI then hm (1

n~ow

(e) If|x| <l lhen hma.’I 0.
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3'.36 .R'emarks The ratio test is fr
since 1t is usually easier to comput

equently easier to apply than the root test
: s
test has wider scope. More precis

el ratios than nth roots, However, the root
ely: Whenever the ratio test shows conver-

Neither of the two tests is subtle with regard to dlvelgcﬂC& Both deduce
leCIgCﬂCC from the fact that a, does not tend to Z€ro as n — oo

3.37
Theorem For any sequence {c,} of positive numbers,

s s o Caty
lim mfc—n < liminf J/c,,

n-cw

Liad -]
lim sup /e, < lim sup-c"—+l .
N n=o new n

Proof We shall

oof W prove the second
quite similar. Put ’

inequality; the Froof of the first js .

a = lim sup &1,
e Cy
If @ = + o0, there is nothing ic

2 : Tove. i i
e M prove. If « is finite, choose B > a. There

Cnt1

oy T G, e

for n > N. In particular, for any p > 0,
Cn+k41 < IéCNﬂ *k=o,1,. P — 1).

Multiplying these inequalities, we obtain .

" Cnip <PPey,

or
aSenBTNp ().
Hence T
(/E;S enB7N B,
so that .

ag) lim sup J/c, < g,
n=wo
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by Theorem 3.20(5). Since (18) is true for every B > o, we have
lim sup \’f;,, <a

n—o

POWER SERIES

338 Definition Given a sequence {c,} of complex numbers, the series

19) . Zoc"z"

is called a power series. The numbers c, are called the coefficients of the series;
z is a complex number.

In general, the series will converge or diverge, depending on the choice
of z. More specifically, with every power series there is associated a circle, the
circle of convergence, such that (19) converges if z is in the interior of the circle
and diverges if z is in the exterior (to cover all cases, we have to consider the
‘plane as the interior of a circle of infinite radius, and a point as a circle of radius
zero). The behavior on the circle of convergence is much more varied and can-
not be described so simply.

339 Theorem Given the power series Lc,z", put

1
. a=limsupJ/|eal, R=7y-
([fa=0,R=+w0;ifa = +0c0, R=0.) Then Zc,z" converges if |z| <R, and
diverges if |z| > R. -
Proof Puta,=c,z", and apply the root test:
lim sup &/ |a,| = |z| lim sup-%/|c,| =l72‘-- "

Note: Ris called the radius of convergence of Zc,2".

3.40 Examples
(@) The series Zn"z" has R=0.
(b) The series 2% has R= +co. (In this case the ratio test is easier to

apply than the root test.)
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. 336 Remarks i i
.36 The ratio test js frequently easier to apply than the root test

ots. However, the root

Neither of the two tests is su

: btle wi i
Hivefgerioe o et g e with regard to divergence. Both deduce

0¢s not tend to zero as n — oo,

3.37
Theorem For any sequence {c,} of positive numbers,

se o Chyy
lim inf 22! < ]iminf(‘/?,,,
n=o

"~ €,
A : [J
lim sup 3/c, < lim sup—2!.

) N =mt I

n

. :
roof We shall prove the sccond_ inequality; the Froof of the first js

- quite similar. Put
o =lim supﬂ .
: Ao G,
Ifa = . . . .
; + o, there is nothing ic prove. If a is finite, choose B > a. There

is an integer N such that

Cn+1

Cﬂ

A . = ﬂ
for n 2 N. In particular, for any p > o,

Chintr < foyay k=0, L.,p=1).
Multiplying these inequalities, we obtain g

t C)V‘Jy S:ﬂ’clvls

or
. c,,gc,d}'"-ﬁ’_’ (n>N).
Hence w .
'\'/Z:S \/n ."Nﬂ_N B,
so that '
(18) lim sup 3/c, < f,

“_-m—-—-_—.____-lw
e
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by Theorem 3.20(b). Since (18) is true for every f > a, we have
lim sup ﬁ, <a

n=w

POWER SERIES

338 Definition Given a sequence {c,} of complex numbers, the series

©
(19 LY

n=0
is called a power series. The numbers c, are called the coefficients of the series;
z is a complex number.

In general, the series will converge or diverge, depending on the choice
of z. More specifically, with every power series there is associated a circle, the
circle of convergence, such that (19) converges if z is in the interior of the circle
and diverges if z is in the exterior (to cover all cases, we have to consider the
plane as the interior of a circle of infinite radius, and a point as a circle of radius
zero). The behavior on the circle of convergence is much more varied and can-
not be described so simply.

3.39 Theorem Given the power series Lc,z", put

,
9. 1k :
¢! . o =limsup / leals ) R=;!

(fa=0,R=+00;ifa = +, R=0.) Then Zc,z" converges if |z| <R, and
diverges if |z| > R.

Proof Puta, =c,z", and apply the root test:
lim sup &/Ja;| = |z| lim sup 2/ c,| =u'
n=* o n=o 4 R i
Note: R is called the radius of convergence of Zc,z".

i 3.40 Examples
(a) The series Zn"z" has R =0.

z i 5 n i
(b) The series }:—l has R = + 0. (In this case the ratio test is easier to
n: B

apply than the root test.)
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(c) The series £z" has R=1, If
§ z 1 eril ive i
i “s R |z] =1, the series diverges, since {z")

(d) The series ¥ — = i i

) Acms }‘" has R=1, It diverges if z =1, It converges for all
other z with |z] = l (The last assertion will be proved in Theorem 3.44,)
(¢) The series Z— has R=1. It converges for all z with |z] =1 by

the comparison test; since |2"n?] = 1/n.

SUMMATION BY PARTS

3.41 Theorem Given two sequences {a,}, {b,}, put
" o 4,=Y a, : i i
lf'nzq;pulA_, '=0. Then, lfOSqu, wehave ‘ ’
@0 g il : e
) ngp“n b, "gpAn(bn = by41) + Ab, = Ap-ib,.
* Proof

):ab _Z(A —A,, )b, —ZA by — ): A nOia1s
Dy L F u VRS \. oy
-and lh 1 ri .
&, e Iast cxprcssxon on the nght is clcarly cqual lo thc right side of
Formula (20), the so- callcd “pamal summauon formula,“ is useful in the
investigation of series of the.form Za, b, , pnrtxcularly whcn {b,} is monotonic.
We shall now give applications. ’

3.42 Theorem Sup;vw:.e

(@) the partial sums A, of Za, form a bounded .rcquence
©®) bozb 2by > il
(¢) limb, =0. '

Then Za,b, converges. e ;
5o G

Wt
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Proof Choose M such that |4,| < M for all n. Given ¢ >0, there is an
integer NV such that by < (¢/2M). For N <p <g, we have

q
Y. a,b,
nmp

q=1
= | S = b+ Ay = Ay,

q=1

<M l Y (b — busy) + b, +b,l
=

=2Mb, < 2Mby S &.

Convergence now follows from the Cauchy criterion. We note that the
first incquality in the above chain depends of course on the fact that

by = bys1 20.

3.43 Theorem Suppose

@ lalzlel2lel =z
©®) cm-120, c,,,.sO (m-l 2 3,% )
(© lim,.pc,=0. .

Then Zc, converges.
" Series for which (b) holds are called “allcmatmg series"; the theorem was

nown to chbmtz ;
Proof Apply Thcorcm 3.42, wnh a,= (-—1)"“ b, = ] c,,l.

3.44 Theorem Suppose the radius of convergence of Xc,z" is 1, and suppose
cozc =z, limeag e, =0. Thcn Ec.z converges at. every. point on the

circle |z| =1, except po.mbly atz=1.
' Proof Puta,'=z"'b,=c,. The hypotheses of Theorem 342 are then
satisfied, since ' ! :
2

1_zn#l
=

Erl-l5=s

|a| =

if|z| =1,z# 1.

ABSOLUTE .CONVERGENCE

" The series Za, is said to converge absolutely if the series I|a,| converges.

4
3.45 Theorem If Xa, converges absolutely, then La, converges. ..
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Proof The assertion follows from the inequality

Sals Elal

k=n

plus the Cauchy criterion.

3.46 Remarks For series of positive terms, absolute convergence is the same
as convergence.

If Ta, converges, but Z|a,| diverges, we say that Za, converges non-
absolutely. For instance, the series

5 I
n

converges nonabsolutely (Theorem 3.43).

The comparison test, as well as the root and ratio tests, is really a test for
absolute convergence, and therefore cannot give any information about non-
absolutely convergent series. Summation by parts can sometimes be used to

handle the latter. In particular, power series converge absolutely in the interior”

of the circle of convergence.

We shall see that we may operate with absolutely convergent series very
much as with finite sums. We may multiply them term by, term and we may
change the order in which the additions are carried out, without affecting the
sum of the series. But for nonabsolutely convergent series this is no longer true,
and more care has'to be taken when dealing with them.

' ADDITION AND MULTIPLICATION OF SERIES

347 Theorem If. Xa, =4, and Th,=B, then (@, +b)=A% B, and
Tea, = ¢A, for any fixed c. i e
Proof Let
4,= Z g,
k=0
Then
' A+ By= T (0t B

Since 1im, e A, = A and lim,_. B, < B, we 'sce that
S lim (A, B ='A +B.

n—®

The proof of the second-assertion is even simpler.:

Thus two convergent series may be added term by term, and the result-
ing series converges to the sum of the two series. The situation becomes more
complicated when we consider multiplication of two series. To begin with, we
have to define the product. This can be done in several ways; we shall consider
the so-called *“Cauchy product.”

348 Definition Given Za, and zb,, we put
n
Cn=zakbn—k ("=0)1127"')
k=0

and call Zc, the product of the two given series.

This definition may be motivated as follows. If we take two power
series Za,2z" and £b,7", multiply them term by term, and collect terms contain-
ing the same power of z, we get

Y az ) b=t az +ay 2t + Y bo + bz + bz +)
n=0 n=0
= agbo + (a9 by + a1bo)z + (a0 b2 + ayby + a3 bo)zt 4+
—cot ez et
Setting z = 1, we arrive at the above definition.
3.49 Example If
n n n '
A, =Y a, B,=Y b, C,=2 ¢
¥=0 k=0 k=0
and A, — A4, B, — B, then it is not at all clear that {C,} will converge to AB,

since we do not have C, = 4, B,. The dependence of {C,} on {4,) and {B,} is
quite a complicated one (see the proof of. Theorem 3.50). We shall now show

that the product of two convergent series may actually diverge.

" The series
2 (=1 1 1 1
2 et
nZan +1 J2 3 A
converges ('fhcorem 3.43). We form the product of this series with itself and
obtain

E:;c,,‘él— (?/1—5+71§) + (7l—§+ 721—\/—2+ﬁ) ’

RN T S B Y
'(TEWWEUNS”?‘E)* '

G

(2]

Al _
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so that
n 1
= (=—IPY — .
i )k;')\/(n—k+l)(k+l)
Since
2 2
(n—k+1)(k+1)-—( +1) —(g—k) 5(12'+1) .
we have

i _g__=2(n+l)

Cul ’
leal x=on+2 n+2

" so that the condition ¢, =0, which is nccessary for the convergence of Zc,, is

not satisfied.

In view of the next theorem, due to Mertens, we note that we have here
considered the product of two nonabsolutely convergent series.

3.50 ;The_orem Sllppose; !
(a) ..ioa" converges absolutely,
®
©)

@
'Then AN

That is, the product of lwo convcrgcnt series converges and to the nght
value, if at least one of the two series convcrges absolutely,

Proof Put oy ;
A4,=Ya, B=Yb, C=Ya, P=B—B
it eha k=m0 L in Km0 b SEKE0T L e 1y ey
Then ik
=aobo + (aob, +abo) + 0 + (aob +ab, s 4+ + a,bg)
-aoB +aiB,_y +- ‘+aBo ] ¥
‘ éao(B +B)+a(B+pu-) - +a B+ ﬂo)
" =;A,\,B}-l.-‘abﬂ,".+:g‘zl_ﬂ —1h +a,fo
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Put
Y= 00[3,, + alﬂn—l LR anﬂo O
We wish to show that C, » AB. Since A,B — AB, it suffices to
show that
1) limy, =
Put

(It is here that we use (@).] Let ¢ > 0 be given. By (c), B, = 0. Hence we
can choose N such that |f,| < ¢ for n = N, in which case
1¥2] < 1Poau+ "+ + ByGuon| + |Bys1Gn-y-1 + *** + Badol
< |Boay + 0 + Pyay_y| + ect.
Keeping N fixed, and letting n- o0, we get

lim sup |y,| <ea,

n=o

since @, —» 0 as k — co0. Since ¢ is arbitrary, (21) follows.

Another question which m'éy be asked is whether the series Zc,, if cori-
vergent, must have the sum AB. Abel showed that the answer is in the affirma-

~ tive.

3.51 . Theorem. “If the: series -Za;, Ib,,.Zc, converge to A, B, C, ‘and
c,.=a°b+ - +a, bo,lhenC AB. ¥ v . ‘

Herc no assumpuon is made concerning absolulc convergence. We shall
give:a simple proof (which depends .on the continuity, of power series) after
Theorem 8.2.

REARRANGEMENTS

3.52 ‘Definition Let {k},n=1,2,3,..., be" a Sequence in which every
positive integer appears once and only once (that is, {k,} is a 1-1 function from
J onto J in the notation of Definition 2.2). Putting

a=a, (1=1,2,3,..),

we say that Za, is a rearrangement of Za,.
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. If{:,,}, {s:} are the sequences of partial sums of La,, La,, it is casily scen
:Nat, in gencral, these two sequences consist of cntirely different numbers,
¢ arc thus led to the problem of determining under what conditions all

rearrangements of a convergent series wi
4 ill converge and whether
necessarily the same. ’ ) lh'c e

3.53 Example Consider the convergent serics

(22) T=d ey =4 d—d4-

and onc of its rearrangements

@3 Ttd=ddtd—d 4+ —p

in which two positive terms are alwa

S O (20, e ys followed by one negative. If s is the

S<1l=4+4§mi,
Since

1 " 1 1
w3 -1 %0
for k> 1, Y <sg<sp<tre i i
. we sce that sy <s¢ <s) <o whcr’c s, is nllh partial sum of (23).
"ot :

limsup s, > sy = ,
nw

so that (23) certainly docs not converge to s
that (23) does, however, converge].

{{we leave it to the reader to verify
This example illustrates the following theorem, due to Riemann '

3.54 ‘Theorem  Let'Za, be a serles o I’ i ich -
pod L o # f real numbers which converges, bllll not

~wLesflsw,

Then there exlsts a rearrangement Ea), with partial sums 8, such that
fA vy "

(24) lim inf s} = «, lim sup s}, = f8
new AL R

Proof Let

Il{,,l +a, s Ianl =4
o= e 23, ),
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Then p, — G = ns P+ G = 1dals Pa 2 0,45 2 0. The series Ep,y 24,
must both diverge. )
For if both were convergent, then

Z(py + 4n) = Zia,l

%
would converge, contrary to hypothesis. Since

N N N N

Z a, = Zl (I)n —qn) s Zl Pn— Zl 9ns

n=1 "= nw "
divergence of Ep, and convergence of £q, (or vice versa) implies diver-
gence of Za,, again contrary to hypothesis. ) v '

Now let Py, P5, P35, ... denote the nonnegative terms of Za,, in the
order in which they occur, and let Qy, Qi Q,‘, ... be the absolute values
of the negative terms of Za,, also in their original order.

The serics LP,, £Q, differ from Ip,, Zg, only by zero terms, and
are therefore divergent. '

We shall construct sequences {m,}, {k,}, such that the serics
Py A Pyy= Q== Qu P 7

4 Py = Qs =" = Qg
which clearly is a rearrangement of Za,, catisfics (24),

Choose real-valued sequences {«,}, {f,} such that a, —a, fa— B,
oy < Py Py > 0. . i

Let my, ky be the smallest integers such that

Py ok Py > By
,l)l .' +l)m| == Q1 -— b Qh <“13
let m,, ky be the smallest integers such that
Pyt Py = Qy == Qu o Poygy 00 + Py, > B2,
l’l e elt +Pnn - Ql -t Qk. +Pm-ﬂ ot bie 4'1’,,,,— Q,““
R LY
and continue in this way. This is possible since ZP, and £Q, diverge.
If x,, y, denote the partial sums of (25) whose last terms are P}
=0, then ) ) s
‘xnfﬂn\ SPm,‘v ‘yn—("nlg Qh,,- &

Since P, =0 and @, =0 as n — o, we sce that x, = f, y, —~ 0.
Finally, it is clear that no number less than o or greater than p cars®
be a subscquential limit of the partial sums of (25).
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3.55 Theorem If Za, is a series of complex numbers which converges absolutely,
then every rearrangement of Za, converges, and they all converge to the same sum.

26) : S lal <o

EXERCISES

1. Prove that convergence of {s.} implies convergence of {|s.]}. Is the converse true?

'@ @ =1y

NUMERICAL SEQ! =
&

§=4

@

8. If Za, converges, and if {ba} is monotonic and bounded, *

€Iges. i
9. ‘I,“mgd the radius of convergence of each of the following pr
Proof Let Za, be a rearrangement, with partial sums s,. Given &> 0,
there exists an integer N such that m > n > N implies

2!!
@ T ® L5
2z n .
(© X7z (d) X3z
7" are integers, infinitely many

ients of the power series 3-as ‘
e of convergence is at most 1.

from zero. Prove that the radius
- + a», and Za, diverges.

Now choose p such that the integers 1,2, ..., N are all contained in the
set ky, k,, ..., k, (we use the notation of Definition 3.52). Then if n > P,
the numbers a;,...,ay will cancel in the difference s, — s/, so that
|s, = sa| <, by (26). Hence {s;} converges to the same sum as {s,}.

10. Suppose that the coe
of which are distinct
11. Suppose a» > 0,s.=a+"

dxverges

(a) Prove that X~

(b) Prove that

am+1 +...+a_"’_.' >1-— L

2. Calculate lim (Vr* +n—n). - Snat Snex Sn+k
3. If 5, = V2, and = T
= d deduce that Y — diverges.
5n+1=\/2+ Vs, (n=1,2,3,..), an Sn
prove that {s,} converges, and that '.r."‘< 2forn=1,2,3,... - () Prove that
4. Find the upper and lower limits of thé sequerice {s,} defined by 3 s i ar 1.1 i
& FI57 T,
D m— [N | Sy Sa-1 S
51 =0; :;m=——.¥12 ‘; "-\'zm‘o'l'=‘i + S2m.
an
5. For any two real sequences (a,.) (b ), prove that and deduce that }:S—ZC"“V““S‘
li n b. li N ns i iax
xm sup (a + )S xm sup a, + hm sup b (d) What can be said dbout
provided the sum on the nght is not 01' the form 0 — oo an an ?
6. Investigate the behavior (convergence or divergence) of -Za, if ' Zm and Em

=Vn¥1—Vn; 1 : :
= g Vil il 12. Suppose a, > 0 and Za, converges. Put

@ = Y=V, 4.
’ 2 1 Y : B rn="Y Gm.

that
d) a. = -l-—.:—z_, for complex values of z. (@) Ergycth
7. Prove that the convergence of £a, implies the convérgence of Y= + + > 1= ;: :
) Z s i
By if m<n, and deduce that E dwerges

if a, >0.
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